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Abstract

Computer viruses remain a tangible threat to systems both within the Department
of Defense and throughout the greater international data communications infrastructure
on which the DoD increasingly depends. This threat is exacerbated continually, as new
viruses are introduced at an alarming rate by the growing collection of connected
machines and their operators. Unfortunately, current antivirus solutions are ill-equipped
to address these issues in the long term. This thesis documents an investigation into the
use of constructive induction, a form of machine learning, as a supplemental antivirus
technique theoretically capable of detecting previously unknown viruses through
generalized decision-making techniques. A group of examples derived from common
software applications, utilities, anci viruses was tested in order to evaluate the benefits of
adding constructive induction to the process of selecting suitable virus signatures. A
prototype virus detection system subcomponent, DRIV. ER, was developed to conduct the
experiments. Due to the feature-rich content of nontrivial example files and DRIVER's
ability to assemble decision trees, results showed marginal benefits--compounded with
significantly increased computational resource requirements--in the use of constructive
induction. Future research, emphasizing a combination of optimization fechniqucs and
test cases increasingly approximating "real world" detection scenarios, should eventually
establish whether constructive induction represents a genuinely useful and practical

alternative to today's antivirus measures.




AN ANALYSIS OF THE EFFECTIVENESS OF A CONSTRUCTIVE

INDUCTION-BASED VIRUS DETECTION PROTOTYPE

1. Introduction

1.1. Motivation

Originally the topic of nothing more than academic discourse, computer viruses
have slowly emerged as a persistent burden on computer operators across the globe, from
the smallest businesses to the United States Air Force and Department of Defense
[WKC95]. These viruses, much like their biological namesakes, are capable of
reproducing and spreading without the knowledge or consent of computer operators—
and, due to the computer industry’s nonstop progress in the areas of interoperability and
interconnectivity, are being provided with an increasing number of opportunities to do so
[Kep94]. Another interesting and important parallel between digital and biological
viruses is the possibility of a complete lack of symptoms on the part of the host organism

or computer. Some viruses simply spread without altering the host in any other




detectable fashion. Many computer viruses make themselves known to the operator in a
wholly non-threatening or trivial manner [ITUV99]. However, the possibility of a virus
introducing destructive or otherwise malicious code—whether intended or not—is, of
course, more than sufficient motivation for finding and eliminating all viruses of any
type.

In order to intercept and disgorge viruses on behalf of the user, a number of
antivirus programs have been developed, most of them for microcomputers, since the
overwhelming majority of known viruses affect only those platforms. These programs
currently are limited to the following techniques: [TUV99]

. Scdnning — The antivirus program simply checks files and boot records (the two
data types that viruses modify) for the byte patterns of known viruses. This
feature must be carefully implemented, since the indicator byte patterns cannot
appear in normal program files.

e Behavior Blocking — The antivirus program detects changes to a boot record or
file and watches the system for distinctive behavior common to certain classes of
known viruses (such as writing to the hard disk at an unusual time), alerting the
user if suspicious activity has occurred. Since these actions are often legitimate
system functions, the user must know when the reported change is indicative of a
virus. This form of protection is sometimes referred to as change detection or
heuristic analysis.

e Integrity Monitoring — The antivirus program uses a databasé of file information

(size, date last modified, and so forth) to periodically check the system for



anomalies that may be indicative of a virus. In order for this technique to be
effective, the system mu;%t be "clean" when the database is established.

e Verification — Separate code within the antivirus program acts as a follow-up to
one of the above techniques, making a final determination as to the identification
and location of the virus. This can only be accomplished for viruses that have
been carefully analyzed.

» Disinfection — The program may be able to remove a virus that has been identified
and located, repairing the affected files. This is a delicate process, which requires
si)eciﬁc knowledge about the nature of the particular virus. If a virus has been
incorrectly identified, the process of attempting system repair is likely to cause
further damage. This part of the antivirus program must be extremely reliable.

Chapter Two of this document presents some of the information regarding viruses and

antivirus programs introduced above in greater detail.

1.2. Problem

Although antivirus programs in their present form have been of great‘ benefit to
the user community, evidence suggests that new techniques will soon be required in order
to combat the growing virus population. Human virus analysts have become heavily
-overburdened with the taék of evaluating new viruses and devising methods to combat

them. This trend represents a potential increase in the amount of time required for an end



user to acquire defensive measures against new viruses. Unfortunately, the amount of
time required for an infection to become widespread continues to decrease, as
microcomputers become increasin gly connected and interoperable. These factors, and
the many limitations of current antivirus products have prompted researchers to explore
new techniques for identifying and removing unwanted software, including both viruses
and other forms of c;)de such as Trojan Horses, which can cause equally serious damage,
but cannot technically be classified as viruses unless they are capable of automatically
reproducing themselves. [Kep94]

An emerging paradigm for handling undesirable software is the use of models
based on the immune systems of living organisms (and vertebrates in particular)
[FHS97]. Such systems are capable of handling a variety of intruders without the need
for input from external agencies. IBM researcher Jeffrey Kephart summarized the
advantageous properties of biological immune systems: [Kep94]

e Recognition of known intruders

e Elimination/neutralization of intruders

e Ability to 1earn about previously unknown intruders

e Determine that the intruder doesn’t belong
e Figure out how to recognize it
e Remember how to recognize it

e Use of selective proliferation and self-replication for quick recognition and

response

Certainly, one of the most remarkable attributes identified was the ability to learn

about intruders not previously encountered by the system. For a computer to emulate this



characteristic, some form of machine learning must take place without user intervention.
One such technique is that of selective induction, in which the machine attempts to
classify test subjects based on properties exhibited by those subjects [BIM99]. For
example, a computer attempting to find all the red fire trucks in a box of children’s toys
might first classify the toys by weight, then by the presence of wheels, and finally by
color. Having successfully separated the red fire trucks from the other toys (probably
after any number of failures) by applying a set of chosen characteristics, the computer
will then “remember” how to achieve this classification. A problem arises when selective
induction fails to successfully classify a group of examples, which can happen any time a
group of available descriptors is insufficient to achieve the desired discrimination. These
cases give rise to a related but more advanced technique known as constructive induction,
in which operators are chosen and applied to the available attributes in order to construct
new attributes. For example, while the properties of “pressure” and “volume” would be
insufficient to identify any particular instance of an ideal gas, these properties can be
combined, using the multiplication operator, to form a new attribute. Since P x V equals
a constant for samples of an ideal gas, this technique provides an accurate and concise
method of classifying ideal vs. non-ideal samples [Gun91]. When this technique is
combined with proper knowledge of the problem domain, hypotheses can be formed and
evaluated with the intent of forming an increasingly focused concept description. The
result is a promising form of machine learning that may be capable of emulating some of
the best features of biological immune systems. Both selective and constructive

induction will be discussed in greater detail in Chapter Two.



Unfortunately, there are other problems inherent to the application of constructive
induction. It is a computationally complex process in which billions of hypotheses can
be fonned through only a few construction iterations, placing a tremendous strain on the
resources of the host computer. Both disciplined application of domain knowledge and
carefully designed software are needed to enable practical virus detection using this
learning method. A protétype software application called DRIVER, designed to function
as a learning component in an integrated virus detection solution, was developed in
conjunction with this thesis as a means of exploring some of the issues associated with
the use of constructive induction in the antivirus problem domain. The proposed solution
uses scanning as a means of detection, and operates only at the local level (i.e., on one

machine at a time).

1.3. Research Objectives

This research represents a combination of the computer virus detection domain
with that of inductive learning. Previous work of a similar nature--in particular, the
research completed by AFIT graduates Cardinale and O'Donnell in 1999--serves as a
baseline [Ca099]. These two researchers proposed both that the public health system
was a useful model for a broad-reaching “Computer Health System” and that the human
immune system was a suitable model for the virus detection system of an individual

computer. They further theorized that constructive induction is a suitable basis for the



virus detection system, holding promise as a method of automating the discovery of new
viruses. This thesis represents an attempt to determine the extent to which these
intuitions were correct. The nature of this research therefore implies the following

hypothesis:

Constructive induction is an appropriate foundation for the virus detection

subsystem of a single-computer antivirus solution.

The primary research objective was to test this hypothesis in order to arrive at
conclusions as to its validity. The next section provides a brief overview as to how this

was accomplished. Chapter Three of this document explains this process in detail.

1.4. Approach

This research was conducted in two primary phases. The first of these was the
research, development, and interim testing of the prototype constructive induction-based
learning engine, DRIVER. This partially-implemented software application represents a
component in a larger overall virus detection model, which also includes a file scanner
and a database that serves as a repository for information about viruses. An evaluation of
the requirements and objectives for DRIVER was accomplished first, followed by a high-
level design of the modules, interfaces, and architecture of the software. Initial test cases

and criteria were also identified during this stage. Implementation of the prototype--



using the Java programming language--took place in an iterative fashion, with individual
routines being tested before integration within larger control structures. Each new
version of DRIVER incorporated fixes for known problems, performance enhancements,
and additional functionality.

The second research phase consisted of final testing, experimentation, and an
analysis of the results. Following acceptance testing for functionality and correctness,
experiments were performed to test the research hypothesis. In these experiments,
DRIVER evaluated a series of test groups developed by Cardinale and O'Donnell. The
test groups were divided into two categories: laboratory cases consisting of synthetic data
intended to further test the functionality and correctness of the learning engine, and
operational cases consisting of file segments culled from actual applications, utilities, and
viruses. DRIVER utilized both selective and constructive induction in an attempt to

classify the file segments within each test group. The largest share of attention was given:
to the operational test cases and their results, since these cases best represented scenarios
likely to be encountered in an operational computing environment. Both the test cases

and an analysis of the results are presented in Chapter Five and Chapter Six.

1.5. Scope

This research does not represent an effort to tackle the overall problem of

providing timely, comprehensive protection from viruses and other forms of potentially



malicious code to computer operators worldwide. It will instead apply a chosen machine
learning technique—constructive induction—to further explore the potential for
alternative virus detection and removal methods at the local level. More specifically,
focus will be placed on a series of test cases indicative of the types of files likely to be
encountered by a fully implemented antivirus solution operating in a typical computing
environment. However, the techniques explored here might be applicable not only to
virus detection, but also to the problem of éutomating the process of distinguishing
between "self" and "nonself” on a particular machine, and possibly even other research
areas within the domain of computer and network security. Chapter Six presents some
suggestions as to how this line of research may be extended in several productive

directions.

1.6. Thesis Overview

This document presents a detailed discussiﬁn pertaining to the research effort
outlined in this chapter. Chapter Two is a review of some of the available literature
regarding those domains applicable to this research; that is, viruses, methods of virus
detection, the process of inductive learning as conducted by machines, and statistical
analysis. In Chapter Three, the methodology used to design and build the constructive
induction-based learning engine component is presented, followed by an in-depth look at

its implementation in Chapter Four. The testing and analysis results are delivered in



Chapter Five. Finally, Chapter Six conveys the conclusion that, as implemented in the
DRIVER software, constructive induction does not appear to be an efficient method of
augmenting the virus detection process. As noted previously, this final chapter also

provides suggestions as to avenues of future research.
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2. Literature Review

2.1. Overview

This chapter presents the most important areas of study from which pieces of
knowledge wére needed in order to develop the constructive induction-based learning
engine prototype. The chapter is divided into four principal sections. The first section is
an introduction to computer viruses—how they work, how they are structured, and the
different types of viruses known to researchers today. The second section concentrates
on virus detection methods and the uncertain future faced by those methods most
commonly in use at this time. The third section déscribes inductive learning, both in
general and in how it can be applied to machines, with emphasis on the core process in
_ the learning engine prototype, constructive induction. The fourth section is intended to
briefly familiarize the reader with a statistical process optimization tool known as
Response Surface Methodology (RSM). Although not a component of the learning
engine prototype, RSM was used by previous researchers in an informal attempt to help
guide portions of the constructive induction process, thereby reducing its computational

complexity.



2.2. Computer Viruses

In order to build a virus detection system, one must first have a good
understanding as to the nature of viruses [Lud98]. The domain of existing viruses
continues tc diversify over time as the total number of viruses introduced in the
laboratory and/or "in the wild" continually increases. The following sections describe
some of the characteristics that all viruses have in common, the structure typically
exhibited by a virus, and the ways in whicﬁ viruses can be classified into various

families.

2.2.1. Characteristics and Structure

There are two characteristics exhibited by all forms of viruses--they are composed
of executable code and have the ability to reproduce [NCS96]. "Executable,” in this case,
refers not only to hardware-native binary instructions, but also to any code, such as
macros and scripts, capable of automatically triggering an event. Reproduction is
enabled once the virus has attached itself to a machine or another program, since this
provides access to the resources necessary for accomplishing the replication. Note that
although infection continues automatically once the viral code is granted access to system

resources, the original infection requires user intervention [Che97].

12



Typically, reproduction is not the only function accomplished by viral code.
Many viruses also carry a payload, or a second executable block designed to do
something other than ensure replication. The payload is often executed once the virus
has successfully attached itself to another file or program. The range of functions that
can be accomplished by the payload is equivalent to those possible using "ordinary"
software applications, and is limited only by the skill and restraint of the virus author.
Some payloads do nothing more than display a message to the user of the infected
machine, notifying them of the virus' presence. Others intentionally erase or modify files
on the host computer's hard disk.  Still others may actually perform functions beneficial
to the host machine, but because they do so in a clandestine fashion and without the
consent of the user, such "help" is rarely appreciated. [WCC89]

Successfully infecting new files and programs requires that the virus contain
routines for both locating new targets and, once found, reproducing itself within the
target [Lud98]. Although these routines may be quite sophisticated, virus authors often
limit their functionality, since a more simple program takes up less space within the

infected file or program, and is therefore more difficult for antivirus software to detect.

2.2.2. Types

There are a number of ways in which viruses can be classified. Here are a few of
them:

e By the operating system which the virus was designed to run under

13



By the type of data or program which the virus tends to infect

By the amount of damage the virus tends to cause

By the methods of infection and/or reproduction

By the method(s) used to avoid detection

Yet another group of classification categories are the environments in which the
various viruses reside. These categories include network vifuses, macro viruses, boot
sector viruses, and file infector viruses. In years past, the most common of these was the
boot sector virus, which, as the name implies, either resides in the boot sector of a
magnetic storage disc, or changes the pdinter to the boot sector [Kas99]. In recent years,
macro viruses have grown substantially in prominence. They are designed to infect the
data files associated with certain software applications that allow macros, or "scripts”
which automatically execute a series of commands [AOGOO0]. Since data files are more
commonly exchanged among users than executable files, files containing macro viruses
are loften provided ample opportunity to infect other systems. Network viruses are those
that spread using e-mail, transport protocols, or some other facet of data communications
[Kas99]. This is another fast-growing category, owing particularly to recent, dramatic
increases in the number of machines connected to the Internet. Finally, file infector
viruses are those which attach themselves to executable files, create duplicate files, or
take advantage of features present in the file system used by a particular machine in order
to reproduce. This is the type of virus that DRIVER--the learning engine prototype
implemented in order to conduct this research--was designed to detect. File infectors can
be further divided according to infection method. Those that use overwriting simply

destroy the target file, replacing it with the viral code. Parasitic viruses use a somewhat
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more subtle approéch--instead of rendering the target file unusable, the virus attaches
itself to the beginning, end, or somewhere in the middle of the target. Companion viruses
make no modifications to the target. The target is copied, and the viral code moves into
the original spot in the file system. Link viruses operate in a similar fashion, but instead
of moving the original file, they simply alter the file system's allocation table so that any
attempt to run the target program actually results in virus execution. [Kas99]

Other types of viruses exist which cannot be so easily categorized by researchers.
Some of these use sophisticated methods of masking their presence from detection
software or other threats. For example, polymorphic viruses attempt to survive by
executing encryption algorithms that continually change the binary ;i gnature of the virus
itself [AOGOO]. In other words, a polymorphic virus retains no identifying signature.
Since the majority of antivirus applications, including the three-component system
described in the following two chapters, use byte scanning to detect the presence of

viruses, polymorphic viruses can be difficult to identify.

2.3. Antivirus Programs

Antivirus programs are the only means of defense most users have against the
increasingly large and diverse collection of viruses that exists today. Thanks to the
continuing efforts of vigilant users, analysts, and antivirus software developers, these

programs provide a great deal of protection. However, the perfect antivirus solution--one
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capable of detecting every possible virus--does not exist. In fact, Cohen was able to
prove that the existence of an algorithm that distinguishes between viruses and non-
viruses without error is impossible [KCW83]. However, the pursuit of better antivirus
techniques is not without merit. The following sections examine both the fnethods
currently used to combat viral activiiy and the issues facing the antivirus industry.

At present, virus detection begins in the laboratory, where an analyst dissects a
piece of assembly code known to represent a previously unexamined virus, or, less
frequently, a new class of viruses [Kep94]. Once this expert has precise knowledge of
the workings of the virus, including the method by which it spreads, the process of
building a defense begins. In order to provide the greatest amount of protection to end
users, two algorithms should be developed--one to detect the virus and one to repair any
damage it has caused to an infected computer. In some cases, there is no chance to repair
the damage caused by the virus. In any event, the new defense methods must then be
delivered to end users, who, in turn, must update their antivirus software so as to
incorporate the new data. Compared to the amount of time in which a virus can damage
valuable systems, possibly causing data loss, the amount of time required to complete the
defense cycle outlined above is understandably frustrating.

The learning engine developed in conjunction with this research was not designed
to address the damage repair problem, only the detection problem. As discussed above,
one of the foremost issues regarding current antivirus techniques is that they are reactive-
-a defense must be developed after the new virus has been discovered. Constructive
induction, the process used by DRIVER to classify a group of example files, represents a

solution that may reduce the need to rely upon third-party analysts and manuél product
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updates in order to detect previously unseen viruses. For more information on this i

process, see the section on inductive learning in this chapter.

2.3.1. Measures of Effectiveness

Three ways of determining the effectiveness of an antivirus system are to measure
its quality of detection, reliability, and completion speed [EAV99]. Detection quality
encompasses all of the ways in which the antivirus software can correctly and incorrectly
classify the files on a given system. Given a laboratory setting in which the true number
of viruses and clean files on a test system are known in advance, there are three different
ways in which detection quality can be measured. The first, most obvious of these is
detection rate, or the number of viruses found as compared to the total number of viruses
on the system. The second measure of detection quality is the false positive rate, or the
number of files incorrectly classified as containing viral code over a certain number of
total files. The third is the false negative rate, or the number of virus files missed by the
scanner over the number of total files.

Reliability, the second measure of effectiveness, represents the ability of the
antivirus application to scan all designated files without halting unexpectedly or requiring
additional inputs from the user. A less than perfect reliability score means that there were

still files remaining on the system which had not yet been scanned.
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The final measure of effectiveness is simply the speed at which the antivirus
program checks the computer. Since most users need their computers for other tasks,

there are practical limits as to how long a complete system scan should take.

2.3.2. Types

The three detection methods used by virtually all modern antivirus applications
are scanning, integrity monitoring, and behavior Blocking. In practice, these methods are
often combined within a single program for maximum versatility [AAV99]. Each of the
three methods is discussed below.

Scanning is the process of exhaustively checking the contents of the memory and
storage devices on a system to look for known viral code [AAV99]. The scanner uses a
database of small byte sequences known as signatures to search for infected files. Each
signature is known to appear in a certain virus or family of viruses. As previously
discussed, the signatures can only be obtained through the effort of one or more expert
human analysts, and once new signatures are added to the scanner's database, end users
must somehow replicate the new database (update the antivirus software) locally. The
input files used by DRIVER to classify groups of examples are the result of applying
scanning techniques to existing chunks of code. Some scanners operate only upon a
request from the user; others remain in memory and scan new or modified files
automatically, as they are accessed. Remaining resident in memory is usually preferable,

since the program can provide instant feedback regarding the contents of new files.
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Another detection method used by some applications is integrity monitoring. In
order to use this technique, an initial database of file size, checksum, and modification
date information must be established and maintained as needed. Following that, the
monitor periodically checks the files on the system and generates an alert if any
illegitimate changes to a file are discovered [AAV99]. One of the primary drawbacks of
Integrity monitoring (used aloné) is that viruses cannot be detected in a timely fashion--
only when the infected file happens to be scanned. This gives the virus time to spread or
conduct similarly undesirable activities.

Behavior blocking is the last detection method that will be discussed here. This
type of program is always resident in system memory, watching for possible signs of
virus activity on a machine or network [AAV99]. For example, a system call to
overwrite a portion of the contents of an executable file may signal the presence of a file
infector virus. One of the advantages of behavior blocking is that this type of activity can
be detected immediately. However, sometimes this type of behavior represents
legitimate system activity, and in general, behavior blocking detectors may generate false
alarms for a wide range of system activities. For that reason and others, this detection

method remains less popular than the two methods previously discussed.
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2.4. Machine Learning and Induction

Machine learning is a branch of artificial intelligence concerned with the study of
automated problem solving performance improvement [ABKS94]. This field of study
can be divided into the five primary paradigms by which machine learning is historically
accomplished, which are analytic learning, instance-based learning, genetic algorithms,
neural networks, and inductive learning [LaS95]. Analytic learning is the process of
synthesizing l.arge amounts of knowledge in order to derive both immediate solutions and
rules which can be applied to similar problems. Instance-based learning is a related
technique in which ways of relating sets of specific cases and experiences to general
problem forms are found. Genetic algorithms form rules by combining or transforming
individual objects within one or more existing rule sets, a process which models the
biological phenomenon of chromosome mutation. Neural networks represent an attempt
to model the human brain using a multitiered network of nodes; knowledge is represented
as a "network of units that spreads activation from input nodes through internal units to
output nodes” [LaS95]. Inductive learning is a systematic method of discovering the
characteristics and rules best capable of describing a problem, using groups of examples
which have been labeled as either positive or negative. This is the general process that
DRIVER uses to learn how to distinguish between "self" and "nonself” example files.
For that reason, this chapter focuses additional attention on inductive learning and its
variants.

Induction begins with a concept, which is a way of dividing a group of objects

into categories. Useful concepts are often intuitive, which, unfortunately, does not make
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them any easier for a machine to understand. The process of induction is an attempt to
"learn” the concept by observing a group of examples and determinin g which example
attributes can be used to achieve the intended classification. Any gi;/en example that is a
member of the group described by the concept is labeled as positive; otherwise, the
example is negative. The optimal result of induction is knowledge sufficient to correctly
classify not only all of the examples which have already been observed, but also any
examples which may be introduced at a later time. The capability to distinguish between
positive and negative examples is known as discrimination [Gun91]. However, in
practice this resuit is often difficult to achieve.

Given a set of positive and negative examples, each exhibiting certain attributes,
the process of inductive learning will find those attributes bes.t capable of distinguishing
between those examples. Upon completion of this learning phase, the machine is left
with at least one hypothesis, which is a description approximating the concept with
respect to the values of the example attributes. For example, if the concept is
"motorcycles” and the example set is "vehicles," the ﬁlachine may develop a hypothesis
that motorcycles can be distinguished from other vehicles because they have two wheels.
As the name implies, hypotheses are not guaranteed to be correct, and can be changed if
proven wrong by subsequent examples. The hypotheses resulting from induction are
collectively known as a rule base [Ca099].

The two types of inductive learning are selective induction and constructive
induction. Selective induction uses only attribute values that have been selected, or
acquired directly from the set of examples [BIM99]. Constructive induction uses not

only the selected attributes, but also constructed attributes, which are derived from the
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selected attributes according to a specified formula. The addition of constructed
attributes can be helpful when the original attributes are found insufficient to classify a
particular group of examples. The following sections elaborate on these two forms of

induction and the components found in an induction system.

2.4.1. Components of an Inductive Learning System

The components that all inductive learning systems have in common are a
problem representation, a set of €éxamples, construction rules, and "built-in" knowledge
known as bias [Pro92]. The examples are described using the chosen problem
representation. One of the key pieces of the problem representation is the set of example
attributes. Most objects have a large number of measurable attrib'utes, but only some of
these are likely to be useful in the chosen problem domain. Since attribute selection can
have a dramatic impact on the performance of the induction system, a human analyst with
experience in the problem domain often decides which attributes will be used as
components in the problem representation. Another issue regarding representation is
structure--that is, how the attributes are arranged and maintained within the system
[DiM81]. No particular structure works best in every case. In those systems that make
use of constructive induction, construction rules constrain the ways in which the selected
attributes may be utilized in building new attributes. The example set should be chosen
carefully, since the system will use this data to determine how to distinguish between

future examples. The examples are normally divided into two groups--the training set
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and the testing set. Induction is first performed using the training set, and then the testing

set is used to evaluate the results.

2.4.2. Selective Induction

| Given a collection of example attributes, selective induction seeks to discover a
subset of one or more attributes best capable of describing the chosen concept. Because
the attributes can be applied in combination with one another, the process is capable of
making implicit use of conjunction, disjunctioln, and negation in relating the attributes to
one another. Such a representation is possible only through the use of a data structure,
such as the decision tree, which can be stored in either conjunctive or disjunctive normal
form and interpreted accordingly. The relationships are defined as follows: two attributes
joined using conjunction are interpreted as a single proposition using the logical operator
and, so in order for the entire expression to be true, both of the named attribute values
must be properties of the example. Attributes combined using disjunction are joined
using logical or--at least one of the proposed attribute values must hold. Negation simply
means that the concept does not include a particular attribute value. DRIVER uses a
binary decision tree data structure to represent these relationships. Selective induction is
limited to the use of these combinatorial techniques only. This is what separates selective
induction from constructive induction--the latter is not limited in its ability to designate

relationships between attributes [Ren90].
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2.4.3. Constructive Induction

Although constructive induction is similar to selective induction, there is an
important distinction between the two processes: constructive induction is capable of
transforming the original problem representation by creating associations between the
regions inherent to that representation [Ren90]. The mechanism by which these
associations are established is the operator.

The hypothesis is one of the central data components of inductive learning. One
way to describe the steps necessary for accomplishing constructive induction is to break
the process down into the four ways in which hypotheses are manipulated: hypothesis
generation, hypothesis ordering, hypothesis evaluation, and hypothesis incorporation.
The hypothesis generation step is the point at which new hypotheses are created.
Generation is not arbitrary; only existing attributes are used, and predefined construction
methods dictate the types of relationships that will be established among attributes. The
available operators represent one type of bias built into this process, and knowledge of
the problem dqmain can be used to introduce other useful forms of bias. For example, if
a particular operator is known to be of little use in a given problem domain, construction
using that operator can be skipped during the generation phase, saving time and
resources. The hypothesis ordering step is an attempt to constrain the total number of
hypotheses that will be evaluated, since the generation step often produces an enormous

number of hypotheses. This preliminary check is not thorough, but it is necessary from a
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practical standpoint, since a thorough examination of all the hypotheses would introduce
another computational expense. Rather, a heuristic approach is used, which does not
guarantee that useful hypotheses will not be inadvertently discarded [Gun91]. Therefore, .
the ordering algorithm represents another form of bias within the system. The hypothesis
evaluation step takes the remaining group of hypotheses and tests each of them to
discover which are most applicable to the stated concept. The method by which this
evaluation takes place varies, but no matter what measure of effectiveness is used, every
member of the example set must be examined against every hypothesis. That is, given n
examples and m hypotheses, the running time of the evaluation step is O(mn) [CLR90].
This is why the number of example and hypothesis inputs to the evaluation step should be
constrained whenever possible. Finally, once the evaluation process has selected the
most capable hypotheses, these selections are incorporated into the rule base. This is
referred to as the hypothesis incorporation step. Even within the rule base, the individual
hypotheses may be stored in order according to the results of the evaluation step.
Although the steps of the constructive induction process were presented in a
certain order here, not all applications of the process accomplish the steps in this same
order. Consider, for example, a constructive induction implementation in which only a
fraction of the total number of hypotheses is generated at a time. In such a system, the
smaller group of hypotheses might be evaluated first, and then ordered according to the
evaluation scores. The incorporation step, then, might involve placing only a certain
percentage of the top-scoring hypotheses in the rule base. In a subsequent iteration of
this downscaled process, the incorporation step might be skipped if none of the newly-

generated hypotheses are equivalent in power to the hypotheses already residing within
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the rule base. In its current implementation, DRIVER bypasses the hypothesis ordering
step in favor of a complete evaluation of all available hypotheses. However, the user can
choose to limit the complexity of the constructed hypotheses in order to reduce the

amount of time needed to perform the evaluation step.

2.5. Statistical Analysis using Response Surface Methodology

Response surface methodology (RSM) refers collectively to a group of statistical
techniques useful for accomplishing empirical model building and exploration [Mon91].
This process uses designed experiments in an attempt to characterize the relationship
between one or more predictors, or input variables, and a response. The objective is to
optimize the response variable. For example, RSM could be used to study the effects of
pressure and temperature on a chemical reaction in which the desired outcome is to
maximize the yield of the substance produced by the reaction. RSM can be of great
benefit in analyzing phenomena that are not currently understood to the degree that
permits models derived directly from physical mechanisms. Note, however, that the
usefulness of the results depends directly on the quality of the experiment from which the
data is derived, and the accuracy with which the conditions affecting the outcome of the

experiment are measured [BoD87].
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2.6. Summary

Information from several different areas of study must be coalesced in order to
explore the hypothesis of this research. This chapter presented sevefal of the most
relevant associated topics. The types and functions of currently known computer viruses
were explained, along with the most common ways in which they are detected and
removed. Emphasis was placed on the need for new, more proactive methods of finding
viruses and other potentially damaging types of undesired code. Forms of machine
learning, especially the related processes of selective induction and constructive
induction, were introduced and described in order to lay the foundation for the core
component of a proposed virus detection subsystem, the design and implementation of
which will be the central topic of the next two chapters. In Chapter Five, the structure
and results of the experiments used to test the research hypothesis will be covered in
detail, along with an analysis of those results. Chapter Six presents the conclusions that
can be drawn from these experiments, and elaborates briefly on the most logical avenues

of exploration for researchers intending to follow up this study.
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3. System Design and Methodology

3.1. Overview

Chapter Two provided a brief examination of the topics relevant to this research,
including constructive induction, the known forms of machine learning, and the current
state of the art in virus detection and removal. This chapter synthesizes these concepts to
describe the essential components of a localized (single processor) virus detection system
utilizing techniques associated with machine learning. A discussion of the requirements,
goals, and high-level architecture associated with the proposed system provides context.
Note that this discussion revolves around a fully operational virus detection system. The
DRIVER prototype, as actually implemented, does not perform all of the functions
described in the following pages. Differences between DRIVER and the virus detection
model as noted as appropriate. Chapter Four presents the components of this system in

greater elaboration.
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3.2. General Description

The DRIVER software represents an attempt to perform some of the functions of
"traditional" antivirus programs using nontraditional methods. Antivirus software is
typically made up of two components: a virus scanning engine and a database. The
database consists of either explicit virus descriptors known as signatures, rules describing

~various forms of behavior associated with viruses, or some combination of the two. Th¢
DRIVER prototype is a learning engine capable of using hypotheses--selected or
constructed from byte strings contained in files or file segments--in the construction of a
decision tree, which provides a basis for the classification of files encountered at a later
time. In the proposed virus detection system containing DRIVER, decision trees would
be the tools residing in the signature database, and the scanner component would make

use of them in determining the virus content of any scrutinized file.

3.3. Objectives

The definition of a system begins with its objectives. In the most general of
terms, the goal of the DRIVER software development and testing process is to explore
the application of a machine learning technique to the problem of detecting files—or
even pieces of files—which do not belong on a particular computer. This domain
includes viruses, Trojan horses, sniffers, and many other types of software employing a

variety of techniques, but sharing an important trait—they all accomplish a function
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neither intended nor desired by the computer’s operator (note, however, that I will often
use the term "virus" as a generalization). Although current commercial antivirus products
attempt to address this reqﬁirement, they all share some less-than—desirablé
characteristics, including a lack of proactive countermeasures and the need for manual
updates to the signature database. In order to transcend these limitations, DRIVER was
conceived with the following objectives in mind:

e Learn — Through an initial examination of examples, acquire information
about the types of files which are and are not appropriate on a given computer
system.

e Detect - Once trained, be capable of identifying unwanted code, including
files not encountered in the past. This capability is a consequence of the
inductive generalization that takes place during the learning stage.

e Adapt - Adjust to evolviné system configuration data (i.e., relearn) and
capitaliie on past experience in order to identify suspicious files.

e Remember — Quickly recognize previously detected viruses.

The adaptation objective exists solely to illustrate the proposed detection system's

ability to automatically relearn the concepts of self and nonself, a capability which is very

limited in current antivirus products.
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3.4. Requirements

Using the learning objective as a starting point, a group of more specific
requirements for the proposed detection system can be developed and used as a basis for
testing [BIF90]. They are:

e Learn about existing “self” (desired) and “nonself” (undesired) files through
the examination of examples. Obviously, this requirement is directly derived
from the first goal above.

¢ Identify useful hypotheses, if any, from provided examples using the selective
induction process.

e Systematically search for more powerful hypotheses‘ using the constructive
induction process.

e Mitigate the computational complexity associated with constructive induction
by utilizing domain knowledge and gﬁidance obtained through the use of
analysis techniques such as response surface methodology. (The existing
learning engine implementation does not capitalize on this technique--see
Chapter Six for suggestions regarding future research.)

¢ Drawing from a pool of available hypotheses, establish a binary decision tree
capable of automatically classifying new examples, while restricting its total
size to conserve machine resources.

e Add the decision tree to a si gnature dafabase, which shares data with the
scanner component (This feature has not been implemented in DRIVER; see

next section for an explanation of the detection components).
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Note that for research purposes, these functional requirements help form a
baseline for the software that will be used to evaluate the usefulness of constructive
induction across a series of test groups containing self and nonself examples. In previous
research, effectiveness scores for constructed hypotheses, combined with an application
of response surface methodology (RSM), provided some indication that the XOR and OR
operators provided the greatest amount of classification power over this particular group
of examples. The exploration of RSM represented one possible way to curb the
explosion in the total number of hypotheses generated as a result of constructive
induction. By showing trends in the classification power associated with batches of
constructed hypotheses, RSM may provide performance benefits to the learning
component of a detection system, allowing a reduction in the time needed to execute the
generate-order-evaluate-incorporate process for large batches of hypotheses in many
cases [Ca099]. Therefore, the DRIVER prototype was written, in part, to help

substantiate this.

35. Architecture

A system's architecture has been described as, "The highest-level concept of a
system in its environment" [Mar97]. The architecture of the detection prototype follows
directly from those objectives and requirements stated above. Its general design stems
from the need to collect, generate, and process large amounts of system and virus data.

Since DRIVER may conceivably act as but one participant in a broader security scheme
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that could be called a "computer immune system," such data may need to be shared with
other applications and software components, some of which are described in the

following sections.

3.5.1. Subsystems

If fully realized, the virus detection system described herein would consist of
three subsystems, each responsible for one aspect of the detection process. One of these
components, the learning engine, was partially implemented in order to test the research

hypothesis. The following sections describe each of the three subsystems in turn.

3.5.1.1. Learning Engine

This component, some of whose functions are handled by the currently
implemented version of DRIVER, is responsible for carrying out the constructive
induction process in order to learn more about a particular set of examples. This is how
the program learns to distinguish between desirable ﬁles and those that may contain
viruses or other security threats. Constructive induction revolves around the

manipulation of hypotheses, which are generated, ordered, evaluated, and (possibly)

incorporated in turn [Gun91]. Generation is the introduction of new hypotheses through

~ the combination of existing attribute values using predefined rules and operators.

Ordering is the process of deciding which hypotheses appear to be the most useful and

33



\ arranging them according to this determination. After this, evaluation takes place, in
which all or some of the hypotheses are tested to see if they meet actual system
objectives. Finally, those hypotheses that are found to be most useful are incorporated
into a list of rules, which may take the form of a data structure. DRIVER is capable of
building a binary decision tree for a given group of examples by systematically

examining a list of hypotheses and assigning them to the appropriate nodes in the tree.

3.5.1.2. Scanner

The scanner subsystem takes the information gained by the learning engine and
uses it to evaluate the target computer. Three possible outcomes may result from the
scanning process és applied to any one file. The file will either be a) recognized as an
appropriate ("self") piece of code, b) recognized as a known undesirable ("nonself")
quantity, or g) fall into an impure leaf in the decision tree, in which even previously seen
examples are not classified. In the final case, the file should remain under suspicion until
either the user can make a determination as to its validity, or more data can be made
available to the learning engine, which will result in positive identification. In its current
form, DRIVER does not perform any of the scanning functions. However, it is capable
of generating decision trees, the efficient data structures that are the basis of the scanning

process.
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3.5.1.3. Signature Database

Accessed extensively by both the learning engine and the scanner, the signature
database is the "data bank" which keeps track of those byte patterns capable of
distinguishing between valid and invalid files. Notice that while the learning engine must
be capable of writing to this database, the scanner only needs to have read access. The
signature database does not directly respond to any user commands; rather, it serves as a
repository for the other two subsystems. Although a fully implemented version of the
proposed detection system would generate the signature database as a shared, external

data entity, DRIVER maintains this list internally for ease of reference.

3.6. Dynamic Structure

One way to describe the behavior of a system is through the set of operations,
states, and events that make up its dynamic structure [RBP91]. The following discussion
illustrates this structure for both the implemented learning engine component (DRIVER)
and a fully functional virus detection system based on the learning engine.

Recall that the stated goals for the virus detection system were to learn, detect,
adapt, and remember. These goals can be translated almost directly into the system states
necessary for accomplishing virus scanning and detection. The first step is for the

learning engine component to “learn” which characteristics distinguish acceptable files
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from those which may not belong in the system, a process requir;ad for any system using
induction as a learning mechanism. Once a detection baseline has been established, the
system passes control to the virus scanning component, which examines files stored
locally, whether temporary or not, for any trace of a known virus. From there, one of two
conditions—encountering a virus or encountering a file that cannot be classiﬁed—\yill
trigger a transition to a new state. If a file containing a virus is found, control should be
passed to a component responsible for either removing the file, establishing quarantine,
or, if applicable (and possible), restoring the file to a “healthy” state. Such a component,
although necessary in any complete antivirus solution, is outside the scope of this
reseﬁch. The other transition event is that in which the scanner finds a file that cannot be
classified--the previously-identified scanning outcome (c). In this case, the file will need
to be identified through another method (such as examination by a human analyst). Since
this third-party identification process may take a relatively large amount of time, the
scanner component continues its examination of any remaining files in the interim,
flagging subsequent “mystery” files in a similar manner. Once these files have been
classified by other means, the results will be introduced to the learning engine
component, and the system transitions back to the “learning” state in order to generate a
new self-description schema. In a locally-contained detection system such as that
described here, a collection of nonself examples could be kept in quarantine for use in
learning, with new examples added once they have been identified. Note, however, the
important assumption regarding learning. Conditions may occur such that the induction
software is unable to learn from the introduction of newly classified files. Consider, for

example, the implications of adding a human analyst to the detection loop—errors in

36



classification may cause a contradiction between two or more files, thereby rendering the
learning engine incapable of classifying files with similar content (the resulting behavior
would resemble that which necessitated a third-party analyst in the first place). These
undesirable possibilities notwithstanding, the system will transition to a new state
following completion of the learning component’s adaptation phase, in which the
signature database is updated to reflect the information gained as a result of the third-
party classification. Following the completion of this update, control returns once more
to the scanner component.

In addition to the behavior exhibited by the virus detection system as a whole,
there is also a dynamic structure associated with each of the system’s three primary
components. The remainder of this section will focus on the structure of the learning
engine component, a partial implementation of which exists in the form of the DRIVER
prototype. This component is responsible for the learning and adaptation functions
performed by the overall system.

The first job that must be accomplished by the learning engine component is to
load a group of examples. During this phase, features are extracted from the example
files using predefined methods. A feature is a collection of attributes (bytes) that can be
found inside a particular file. The program then compiles an initial list of hypotheses--
candidate solutions--from this group of extracted file features. No hypothesis
manipulation takes place at this time. This list is then used to perform selective induction
over the group of examples, during which a binary decision tree is built. If the selective
induction process is successful in classifying the examples without any ambiguity, then

the decision tree is saved for use as a detector. If full classification cannot be achieved
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through selective induction, the learning engine moves to the constructive induction
phase, in which new hypotheses are built using a predeﬁned‘ set of operators and the
initial list of selected hypotheses. Constructive induction may also be invoked in order to
achieve greater clarity of representation, or to establish a decision tree with improved
inductive generalization power. Note that in an application such as DRIVER, which uses
only logical operators for construction, ambiguity cannot be removed; however, a more
compact representation can be achieved (see Chapter Five for examples). Following
construction, the process of building a decision tree is repeated, using the new list of
hypotheses. If the new hypotheéis vector proves insufficient to classify the examples, the
construct-and-evaluate cycle is repeated, this time generating more complex hypotheses.
However, this process cannot continue uninterrupted until an unambiguous decision tree
is built. Since each new round of the constructive induction process requires an
exponentially larger number of steps during both the construction and evaluation states,
there are practical limits to the number of times the construct-and-evaluate cycle can be
completed. In practice, the learning engine would likely be instructed not to proceed with
any further construction once the available ﬁypotheses have reached a specified level of
complexity. This is appropriate in light of Occam's Razor, which states that simple
theories should be shown preference over those that are more complex. Many additional
details regarding this process are covered in Chapter Four. Note that the DRIVER
prototype requires user interaction in order to perform all of the steps discussed above,
including the extraction of features from example files, which is handled by a separate

utility.
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3.7. Data Flow

Another way in which to understand the behavior of a system is to examine the
flow of _data [RBP91]. The primary data types shared among the virus detection system’s
components are examples and decision trees, although a decision tree is merely a
“packaged” list of one or more hypotheses for use in efficiently classifying examples.
Most of the data transformation takes place within the learning engine component, which
takes groups of examples and forms a list of hypotheses and a decision tree from the
features within those eXamples. Decision trees are stored in the signature database
component, and then passed to the scanner for use in determining which files may
contain viruses. Since the detection system will likely encounter, at one point or another,
examples which cannot be classified (due to ambiguity in the decision tree), the system
must be capable of flagging these anomalies and then accepting data regarding their
status, once they have been classified by other means. This information can then be

processed by the learning engine and, in turn, added to the signature database.

3.8. Testing and Integration

Since the virus detection system described herein is based on a component

architecture, a bottom-up approach to verification testing is appropriate. First, each of the
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three primary components should be tested to ensure they meet the original operating
requirements and that there are no errors in processing. Valid output should be produced
for any given set of valid inputs. Oan; all the components have satisfied these conditions
on their own, the next objeptive 1s to ensure that the intefface between each component
works as intended. The signature database must accept hypotheses from the learning
engine, the scénner and the learning engine must be able to communicate via the
signature database, and the learning engine must accept external inputs such as examples
and pre-classified files. Data integrity must be maintained throughout. Finally, the
detection system can be tested as a whole.

For research purposes, testing of the DRIVER learning engine prototype focused
not only on the efficiency and accuracy of the component’s processing, but also on
determining the extent to which construction induction is useful in classifying certain test

groups designed to simulate real-world detection scenarios.

3.9. Summary

This chapter described, in general, the goals, requirements, and overall
architecture of a fully functional virus detection system comprised of three primqry
components. Coverage was given to important design issues such as dynamic structure,
data flow, testing, and integration. Whenever possible, these concepts were also
discussed as they apply to DRIVER, an implementation prototype of the learning engine

component of the detection system. Deviations between the design proposal and the
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prototype were noted where appropriate. In the next chapter, DRIVER will be discussed
in greater detail. Chapter Five presents results satisfying the research objectives outlined

earlier in this chapter.
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4. System Implementation

4.1. Overviev&

Whereas Chapter Three concentrated on the “big picture” regarding a proposed
virus detection system, this chapter addresses implementation issues, especially in regard
to the working learning engine prototype, DRIVER. These issues include functional
decomposition, design decisions and the tradeoffs associated with them, and limitations
of the prototype in its current form. The results obtained from testing DRIVER in the
laboratory are provided in Chapter Five. Conclusions derived from this research are

presented in Chapter Six.

4.2. Definitions

For the reader’s convenience, this section collects the definitions for a number of
terms frequently referred to throughout this chapter (some of which have already been

introduced in preceding chapters).
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Aftribute

A single byte (8 bits) from a file.

Concept

A description of the classification which the induction process
attempts to achieve. This research is primarily concerned with

the concepts of “self” and “nonself.”

Example

A file or portion of a file that has been labeled in advance as
representing self or nonself. The induction engine uses examples

to construct decision trees.

Extraction Method

The algorithm used to cull features from files. Three such
methods are utilized: chunking, sliding window, and every other

sliding window. Also may be referred to as a Selection Rule.

Feature

An ordered collection of attributes from a file, collected using
one of three extraction methods. The induction engine uses

features that are 16 bytes in length.

Hypothesis

All or part of a potential solution to the classification problem
which the induction engine attempts to solve. A hypothesis
created using selection contains one feature, while a hypothesis
created using construction contains two or more features related
using one or more operators (see below). Hypotheses selected

by the induction engine become signatures.

Operator

A mechanism which relates two or more hypotheses according to
a predefined rule. DRIVER uses the logical operators AND,
OR, and XOR.

Signature

A series of bytes from a file that can be used to distinguish

between self and nonself.
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4.3. Induction Engine

Ultimately, DRIVER’s function within the virus detection system is to develop
the means of distinguishing between acceptable (“self”) and unacceptable (“nonself”)
files, and to provide this information to the other system components. The process by
which this distinction is arrived at is constructive induction. The constructive induction
process-has four stages--generation, ordering, evaluation, and incorporation--all of which
revolve around a central data dbject, the hypothesis. The implementation of this process

is the topic of the following sections.

4.3.1. Hypothesis Generation

Hypothesis generation is a controlled process, which behaves according to a
predefined set of operations. The two methods of generating hypotheses are selection
and construction. Hypotheses that have been created by selection represent features that
have been extracted directly from one or more example files according to a set of rules,
while hypotheses created by construction represent a composite object formed by joining

two other hypotheses with an operator. This section covers these concepts in detail.
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4.3.1.1. Hypothesis

The hypothesis is the central data object in the induction process. In the abstract,
a hypothesis represents a candidate problem solution, or a piece of a solution. Within the
virus detection system, hypotheses represent file features (byte strings), or groups of
features, which may be used to classify a set of examples. |

Although DRIVER performs the induction process using features created by
extracting byte sequences from files, byte sequences are not the only characteristics of a
file that might be useful in detecting undesirable code. Some antivirus implementations
attempt to find viral code by examining the behavior of a given system’s processes. The
reasoning behind this approach is that infected files are likely to cause unusual operating
system calls, or place the computer in an otherwise unfamiliar state. This form of
observation would require a scanner component different from that described in the
previous chapter; howevef, in principle, the induction engine could continue to perform

the same function in such a detection system.

4.3.1.2. Examples

Examples are a crucial component in an inductive learning system. They are the
means by which a method of classification with respect to a particular problem domain is
formed. DRIVER uses example sets that contain a group of file segments labeled as

either self or nonself.:
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Each example set examined by DRIVER is a single file containing feature data
from ten different file segments. This file is built by a custom preprocessor application,
which examines a target group of example files, uses assigned extraction methods to
generate groups of features (see below), builds a list of unique features, and writes a new
file containing both the examples and the feature list. The preprocessor also converts
each unique feature into an integer, and, when writing to an example set, represents the
byte strings in each example using this integer assignment. The practical benefits of this
step should include conservation 'of both space and engine processing time, although no

formal actions were taken to confirm this.

4.3.1.3. Feature Extraction

There are two fundamental methods by which the characteristics of a particular
file may be obtained. They may either be selected using a particular feature extraction
method (many such methods exist), or constructed by combining additional features to
obtain new features (again, there are an arbitrary number of ways by which to accomplish
this). In order to perform induction on a group of examples, DRIVER must start with a
group of features that have been selected from those examples. Three such extraction

methods were used in obtaining research data:
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Table 1 -- Feature Extraction Methods

Method

Definition

Resulting Hypotheses

Chunking

Contiguous byte segments of equal
size are extracted from the example

(no overlap between segments).

N/K

Sliding Window

Overlapping byte segments of equal
size are extracted; the “window” slides
one byte toward the end of the file for

every subsequent feature selection.

N-K+1

Every Other Byte
Sliding Window

Overlapping byte segments of equal
size are extracted; however, only
even-numbered bytes in a particular
sequence are assigned as attributes of
the resulting feature. Therefore, in
order to obtain features of the same
size as those selected using “sliding
window,” the window must be twice

as large.

N-(2K-1)

In the table above, N represents the total number of bytes in a particular example,

and K represents the feature size. Based on research precedent, a feature size of 16 byes

was chosen [KSSWO97].

Since this research seeks to verify findings implied by previous work in

induction-based virus detection, the same extraction algorithms used previously have also

been employed here. Cardinale and O’Donnell indicated that these three selection rules

were chosen based largely on computation and storage limitations. In general, the
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number of available rules is nearly limitless, and no additional criteria were used in an
attempt to find the most effective and/or efficient rules.

The feature selection process described above is not an integrated function of the
DRIVER learning engine prototype. Instead, three preprocessing applications were built,
one for each extraction method—chunking, sliding window, and every other byte sliding
window. Each preprocessing application reads a speciﬁe‘d group of examples, selects a
series of features based on its respective algorithm, and, using a format understood by
DRIVER, writes a new file containing both the original examples and a list of unique
features discovered. If desired to facilitate future research, integration of the
preprocessors with DRIVER (or another induction engine) could be accomplished with a

relatively small amount of effort.

4.3.1.4. Construction

The other method by which features may be obtained from an example is
hypothesis construction. Construction is the process of combining hypotheses with
constructive operators. This technique is valid for both hypotheses that have been
selected directly from an example, as described in the preceding section, and hypotheses
that have already been generated using construction. In the latter case, the result of
construction is simply a more complex hypothesis, containing a greater number of both
features and operators.

Just as extraction methods must be chosen in order to perform selection,

constructive operators must be utilized in order to perform construction. Operators
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establish a relationship between existing hypotheses, known as operands in this context.
In general, these relationships are limited only to those that are testable; that is, the
induction process demands that there exist some way of establishing whether a proposed
relationship is actually a characteristic of a given example (or not).

The operators used by DRIVER to construct new hypotheses are known as logical
operators. A Boolean value is the result of an evaluation of such a hypothesis. The three

operators, XOR, AND, and OR, are defined below.

Table 2 -- Operator Definitions

Operator Evaluates To...

XOR TRUE if and only if one of the operands in the hypothesis

evaluates to true and the other evaluates to false

AND TRUE if both of the operands in the hypothesis evaluate
to true; otherwise FALSE

OR TRUE if at ]east one of the operands in the hypothesis
evaluates to true; otherwise FALSE

The number of hypotheses constructed in one round, from a given set of features
and/or hypotheses, can be determined by calculating C (N,2)—"“N choose 2”"—where N is
the size of the original set. This assumes that no isomorphs (functionally identical
hypotheses) are created as a result of the construction process.

As implemented in DRIVER, several forms of bias exist in the application of
operators to existing hypotheses. To begin with, construction is limited to homogeneous
sets of hypotheses. In this case, that means that no constructed hypothesis is ever
composed of features extracted using more than one selection rule. For example, no

hypothesis combines a feature selected using chunking with one selected using a sliding
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window. Not only does this restriction help minimize the total number of constructed
hypotheses, it also simplifies the construction process'and reduces the complexity
associated with the file scanning component of the virus detection system. Another form
of bias is represented by the limited choice of operators. The three logical operators
utilized by DRIVER (XOR, AND, and OR) were chosen for their ability to capture
information from binary files, precedent in virus research, and fhe relatively high degree
of success observed in previous testing conducted by AFIT researchers. In particular,
this investigation is concerned with the classification power of these operators when
applied to features extracted from various commercial sot;tware applications, utilities, and
viruses. Another type of bias introduced by DRIVER lies in the procedure by which
existing hypotheses and operators are combined. There are a number of possible
algorithms by which this combination can be performed, but DRIVER allows only two.
The first technique is to apply a single operator (any of the three available) across the
entire set of available hypotheses, and then evaiuate the results. The second, less
conservative technique is to apply all of the available operators to the original set of
hypotheses before the evaluation step. Note that since the latter technique results in
3(C(N,2)) hypotheses, the amount of time required to perform a complete evaluation also
increases by a factor of approximately three.

The actual process used by DRIVER to construct new hypotheses is relatively
simple. Using one or more operators as directed by the user, DRIVER starts with a list of
all the existing hypotheses. The first hypothesis in the list is then combined with every
other hypothesis in the list using one of the designated operators. Each constructed

hypothesis is itself a “mini-list” of three components. The first component represents the
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newly-assigned operator, and the other two components can be thought of as subtrees.
The content of a subtree is a hypothesis of any degree of complexity. Following the first
round of combinations, the first hypothesis is dropped from the list, and the resulting list
of N — 1 components is handed to a new instance of the construction procedure.
Construction halts when only one item remains in the list of original hypotheses, and
cannot be combined with anything. Then the process is repeated for any remaining
operators. Following that, the newly constructed hypotheses are added to a master listing
maintained by DRIVER, and considered for inclusion in any subsequent decision trees.
Because the construction control structure is functionally equivalent to a nested loop, the
construction process is computationally expensive, requiring O(n’) time for a given list of

n original hypotheses.

4.3.2. Hypothesis Evaluation

The hypothesis evaluati§n step is that which assigns a score to one or more
hypotheses based on their classification abilities over a given example domain. The score
is based on the results of comparing the hypothesis against an example set to find the
extent to which the hypothesis is capable of distinguishing between “self” and “nonself.”
Based on this score, a hypothesis may be discarded in order to conserve storage space.
DRIVER determines the score for a particular hypothesis by calculating a measure of
effectiveness known as eﬁtropy, which captures the amount of information that can be
gained by classifying the target examples using that hypothesis [Qui86]. The entropy

value is determined by the following equation, in which p is the number of examples
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classified as members of class P, and » is the number of examples classified as members

of class N:

— pIn(—Z—y—nIn(—"—)
p+n p+n

(p+n)

The most desirable entropy score is 0, which is the score assigned to any hypothesis
capable of classifying the set of examples so as to completely separate the self examples
from the nonself.

Although DRIVER calculates an entropy score for every available hypothesis
during the decision tree building phase, it remembers only the lowest scores for each
node in the tree. Consequently, an entropy score may be calculated many times for any
given hypothesis during the time in which the decision tree is incomplete. If this seems
wasteful, keep in mind that the score for any hypothesis may change significantly,
depending on which subset of examples has “filtered” down to the point in the decision
tree to which the current round of entropy calculations applies.

The method of evaluation used by DRIVER is different from that utilized in
previous research. Cardinale and O'Donnell used two measures of effectiveness, power
and purity, which also served as the RSM response variables. Power measures the
pumber of examples classified--whether correct or not--against the total number of
examples. Purity measures the degree of correctness among examples that were

classified [Ca099].
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4.3.3. Hypothesis Ordering

The ordering step may be performed either before or after hypothesis evaluation.
The primary impetus for ordering hypotheses is to reduce the computational comple;xity
associated with any remaining steps by removing one or more hypotheses from further
consideration. Ordering strategies vary, but, as an example, a group of hypotheses may
be ordered according to a piece of domain knowledge that has been coded directly into
the learning engine. The current DRIVER prototype does not perform hypothesis

ordering.

4.34. Hypothesis Incorporation

Hypothesis incorporation is that stage in the induction process when one or more
hypotheses, either alone or in combination with other hypotheses, are marked as being
found most capable of classifying the target example set. In a complete virus detection
system, these hypotheses would be converted into a form readable by the other
components in the system, reclassified as signatures, and added to the signature database.

In DRIVER, a hypothesis becomes incorporated when it is added to a decision tree.
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4.4. Scanning Using a Decision Tree

Once built, a decision tree is the means by which an induction-based virus
detection system would search for suspicious files. Any such fully operational system,
using DRIVER as its learning engine, would use virus detectors stored in the form of
binary decision trees. Scanning a group of files using a binary decision tree is a
straightforward procedure. The scanner component would first need to know what
feature extraction method was originally used to create the tree (remember that DRIVER
does not mix selection mles when constructing hypotheses; the same is true for trees), so
that the distinguishing feature(s) of a particular file will be properly identified. Then,
each file would be classified using ‘the criteria specified by the hypotheses located at
various nodes within the decision tree. Files containing the feature, or combination of
features, described by the first hypothesis would move down one of the branches in the
tree, and files not containing the indicated feature(s) would move down the other branch,
aﬁd so on. The only node in the tree at which a hypothesis must appear is node 0, or the
“root” of the tree. In most cases, leaves in the decision tree represent points at which a
pure subset—a group consisting of either all positive or all negative examples—was
isolated during the induction process. The preferred result of scanning a previously
unseen file is that the new example will fall into one of these leaves in the existing
decision tree, and be classified accordingly. The ability to generalize over a larger group
of examples is an important product of inductive learning. Howéver, there is always a
chance that a new example will not be cleanly classified using an existing decision tree,

due to an ambiguity caused by an impure leaf. The virus detection system user may wish
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to choose a particular posture with regard to such cases. The safest alternative would be

to place a quarantine on the 'ﬁle (ban its use by the computer system) until a third-party

| analysis could be applied to determine the nature of the “unknown” software. Once this

analysis is completed, the learning engine component can incorporate this additional
knowledge into a new decision tree, and the classification power of the detection system

as a whole will grow.

4.5. Summary

This chapter presented some of the implementation and design issues associated
with both the DRIVER learning engine prototype and the proposed overall ‘virus
detection system. The four components of constructive induction—hypothesis
generation, evaluation, ordering, and incorporation—were discussed both in the abstract
and in how they are accomplished by DRIVER. Limitations and biases inherent in the
current implementation were presented, along with ways in which some of the
undesirable constraints might be overcome in the future. In Chapter Five, the results of
laboratory testing using the DRIVER prototype are presented. Finally, Chapter Six
reveals the overall conclusions that can be drawn from this line of research to date, and
provides some suggestions as to what types of research may help further advance this

particular field of study.
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5. Analysis and Results

5.1. Overview

In the previous chapter, the components and algorithms of both a fully operational
proposed virus detection system and a partially implemented prototype learning engine
component were discussed in detail. This chapter is primarily concerned with presenting
the results obtained by running a series of selected test scenarios using DRIVER, the
learning engine prototype. These tesf scenarios had a dual purpose. The first round of
‘testing was intended to ensure that DRIVER serves its purpose as an induction engine
without errors of any kind. The second round of testing involved eleven test cases -
previously utilized by researchers Cardinale and O’Donnell, in an attempt to verify the
intuition they developed for the use of constructive induction in the virus detection
domain. Each of the test cases and its focus is explained, although particular emphasis is
placed on the final three test cases, in which the example files were derived from
software commonly encountered by ordinary users in the “real world.” The RSM
analysis of these three test cases indicated a tendency for the induction process to select
hypotheses based on the XOR and OR operators. DRIVER was able to cross-examine
the validity of this analysis by building decision trees based on the given examples, a

technique not utilized in experiments conducted by Cardinale and O’ Donnell.
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5.2. Test Cases

As discussed above, the two primary categories of fest cases were those used to
test DRIVER for correct operation and output, and those used to validate results obtained
through previous research. The latter category can be further divided into laboratory and
operational test cases. Regardless of the testing category, particular attention was paid in
every test run to the composition of the hypothesis or hypotheses selected by the
induction engine for inclusion in the decision tree.

Of those test cases designed to verify DRIVER’s operation, the most important
was the “weather” data set. This file contained information on 14 different examples, all
of which can be classified correctly using both selective induction and constructive
induction with logical operators.

The laboratory»portion of the test cases consisted of contrived examples designed
primarily to test the functionality of the learning engine. Four of these test cases were
found to be misrepresented in the literature that documents the research conducted by
Cardinale and O’Donnell. The results of these test cases are not emphasized here, but are
included for completeness. The operational test cases were put together using byte
segments extracted from widely used software applications. Each of the 11 laboratory
and operational test cases was made up of 10 file segments, 8 of which were designated
as self with the remaining 2 designated as nonself. Because of the overbearing
computational complexity introduced by large file sizes and (as a result) numbers of

hypotheses, the 10 file segments in each test case were limited to 100 bytes.
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5.2.1. Verification Testing

The test case used to perform most of the verification testing on DRIVER was the

Weather Example, which is composed of a total of 14 examples, each having four

attributes as follows:

Table 3 -- Data for the Weather Example

Example Type Attrib A Attrib B Attrib C Attrib D
No.
1 nonself sunny hot high false
2 self overcast hot high false
3 self rain cool normal false
4 self overcast cool normal true
5 self sunny cool normal false
6 self sunny mild normal true
7 self overcast hot normal false
8 nonself sunny hot high true
9 self rain mild high false
10 nonself rain cool normal true
11 nonself sunny mild high false
12 self rain mild normal false
13 self overcast mild high true
14 nonself rain mild high true

The weather examples can be successfully classified using only selective

induction. The resulting decision tree has 6 nodes containing hypotheses and 7 leaves.

Since the weather examples can also be classified using constructive induction, the next

part of the test was to use the three available operators to generate a batch of all possible

hypotheses composed of one operator and two single-feature hypotheses. This process

results in 135 new hypotheses (145 altogether). Of those, two--(sunny AND high) and




(rain AND true)--are sufficient to construct a new tree with the same classification power
as the aforementioned tree containing 6 hypotheses. Thus, a more compact
representation of the weather concept hgs been achieved. However, there is a tradeoff in
the amount of time required to establish the tree composed of constructed hypotheses,
which is greater than that required to establish a tree composed only of selected
hypotheses. Since DRIVER can construct hypotheses of greater complexity than those
containing only one operator, a final test was devised to determine whether more
sophisticated hypotheses would be of any use in classifying the weather data. The
answer to this question turned out to be "yes." A single hypothesis-—((sunny AND high)
XOR (rain AND true))—l-is capable, in this case, of successfully separating all self from all
nonself examples. Hence, the result of this final test was a decision tree containing only a
single node. Unfortunately, the same tradeoff, noted above, between the amount of space
required to store the decision tree and the amount of time required to establish the tree
was again evident. In fact, the amount of time spent calculating the entropy for each of
the 31,330 available hypotheses was several hundred times greater than the amount of
time required to establish the tree made up of hypotheses containing a single operator.
This test scenario illustrates the need for effectivé process optimization techniques.
Although relatively complex hypotheses with powerful classification properties are
deéirable (in fact, they may be required in other cases), they are much less useful if they
cannot be obtained in a reasonable amount of time. Given a priori knowledge of this
example domain, the time required for DRIVER to identify the most useful classifier may

have been reduced significantly.
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5.2.2. Laboratory and Operational Test Cases

The eight sets of laboratory test cases were formulated to measure the

effectiveness of an induction engine over a wide range of possible conditions, in

classification scenarios ranging from obvious to impossible. The following table, copied

from the previous work done by Cardinale and O'Donnell, explains the composition of

each of these cases:

Table 4 -- Laboratory Test Case Definitions

Number Structure Purpose

1 Self - All 1s Does detection work?
Nonself - All Os

2 Self - All 1s Does the learning engine
Nonself - Random characters detect repeated patterns?

3 Self - Random characters without y Does the learning engine
Nonself - Random characters with y induce a classifier for

infrequent patterns?

4 Self - Have equal number of 1s and Os | Does the learning engine
Nonself - Random characteristics with | detect parity of bytes?
unequal number of 1s and Os

5 Self - Contains pattern y same distance | Does the learning engine
apart detect spatially and
Nonself - Contains pattern y varying logically?
distance apart

6 Self - Same as Nonself Does the learning engine's

_ evaluation process work?

7 Self and Nonself are complements of Can the learning engine
one another induce detectors for

absolute position?

8 Self - Randomly generated string Does the learning engine
Nonself - Randomly generated string detect patterns in random

strings?

Examination of the test cases revealed discrepancies between the above

descriptions and the actual contents of the original test file segments. In particular, test
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cases 2, 3, 5, and 8 were misrepresented in the original table shown above. The
appropriate descriptions are as follows, in which the test case numbers that required

changes are shown in bold print:

Table 5 -- Revised Laboratory Test Case Definitions

Number Structure
1 Self - All 1s
Nonself - All Os
2 Self - Four file segments composed of all 1s, 4 composed
of all Os '
Nonself - Random characters, both files the same
3 Self - Continuous string of ‘10101010’ bytes
Nonself - Random characters, both files different
4 Self - Contain equal number of 1s and Os
Nonself - Random characteristics with unequal number of
1s and Os
5 Self - Continuous string of ‘10101010’ bytes
Nonself - Same as Self
6 Self - Same as Nonself
Self and Nonself are complements of one another
8 Self - Randomly generated string, each file segment
different
Nonself - Identical to one of the "self" file segments

~J

Since the test descriptions required modification, the purpose originally behind
some of the test cases was invalidated. For example, test case five turned out to be
functionally identical to test case six. For that matter, test case eight contained two
identical files, one labeled as self and one as nonself, rendering this scenario similar to
cases five and six (With the exception of some unambiguous branches in the resulting
decision tree).

Each of the eight laboratory test sets was tested using five different sets of
hypotheses: selected hypotheses only, selected hypotheses and those constructed using

XOR, selected hypotheses and those constructed using AND, selected hypotheses and
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those constructed using OR, and selected hypotheses combined with those constructed

using all available operators. No hypotheses containing more than one operator were

constructed. In addition, each of the five sets of hypotheses was generated three times,

using each of the three feature extraction methods (chunking, sliding window, and evéry

other byte sliding window). Therefore, a total of 15 tests were run against each group of

test examples. The results of this testing were as follows:

Table 6 -- Laboratory Test Case Results

Test Case Number

Results

1

All test groups were classified using a single selected feature
(byte '11111111" in self file segments)

2

All test groups were classified using a single selected feature
(first byte of the nonself file segments)

All test groups were classified using a single selected feature
(byte '10101010' in self file segments)

A single constructed hypothesis using XOR or OR was selected
if available; otherwise, the examples were classified using two
selected hypotheses

A single selected feature (byte '10101010") was placed at the
root of the decision tree; since only one feature was available,
the induction engine quit with unclassified examples still
remaining

The induction engine quit after attempting to classify the
identical examples using a very large decision tree

All test groups were classified using a single selected feature
(first byte of the nonself file segments)

Since identical files carrying opposing labels ("self" and
"nonself") existed, the induction engine quit after attempting to

classify the identical examples using a very large decision tree

The laboratory test cases did not represent an exhaustive exploration of

DRIVER's behavior under all possible inputs, but they did provide some data. Test cases

five, six, and eight showed that under no circumstances could a group of examples be

classified when identical examples labeled as both self and nonself existed within the

group--an expected result. In every other case, classification was successful, but the
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results were not always obtained in accordance with the stated purpose of the individual
tests. For example, case seven was intended to test one of the spatial operators used in
previous research; however, DRIVER was still successful in classifying the file segments
because it recognized the complementary bytes as a distinguishing feature. Case four
was a test of the engine's ability to detect byte parity, but because DRIVER simply
selected two features present only within the nonself examples, no conclusions could be
directly drawn from this test case regarding the ability to detect parity. In some of the
other cases, the originally stated goal for the test of the learning engine's behavior was
incompatible with the actual contents of the test group, a result of the discrepancies
between description and content noted earlier. Group three was a case in point--it was
intended as a tool to determine whether the leaming engine could find a classifier for
infrequent patterns contained within the file segments, but since the "self" examples
contained continuously repeating patterns (which DRIVER found), the original question
regarding pattern finding could not be answered using this test group. |

The operational test cases were created in order to test the learning engine's ability
to distinguish between byte segments extracted from actual application programs (and
other types of common software). Note, however, that, just as with the laboratory test
cases, each of the examples within an operational test case is only 100 bytes in length. In
order to obtain the most realistic possible results using such relatively small chunks of
code, the following extraction method was specified: start at the beginning of the
application file, jump 2,000 bytes toward the end of the file, and then extract the first 100
bytes immediately following the file pointer. The primary goal of this method was to

avoid the library references often found in the headers of executable file types, which, if
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extracted as representative byte patterns, would tend to make groups of examples appear
similar to the learning engine. Once again using the descriptions developed by Cardinale

and O'Donnell, who created the original data, here is a listing of the operational test

cases:
Table 7 -- Operational Test Case Definitions
Number Structure Purpose

9 Self - Randomly chosen programs Does the learning engine
Nonself - Randomly chosen programs detect patterns in programs?

10 Self - Programs copyrighted by Does the learning engine
companies other than Microsoft detect patterns in programs
Nonself - Programs copyrighted by from different companies?
Microsoft

11 Self - Randomly chosen programs Does the learning engine
Nonself - File infector viruses detect viral patterns?

This is the group of examples that, when analyzed using Response Surface
Methodology, appeared to be most easily classified using hypotheses containing the XOR
and OR operators [Ca099]. This analysis does not necessarily imply that constructive
induction is required in order to classify the examples—only that hypotheses containing
these operators seem to provide a more compact representation of the concept. In fact,
since an equivalent decision tree exists for any hypothesis constructed using one of the
available logical operators, solutions using only selective induction were known to exist
prior to testing. Therefore, DRIVER was directed to use both selective and constructive
induction in its analysis of these "real world" test cases. The test series conducted was
the same as that described for test cases 1 through 8 above. The goal was to identify any
trend in the selection of hypotheses constructed using a particular operator, and also to
evaluate the tradeoffs between selective and constructive induction, as described above.

Here are the results for these operational test cases:




Table 8 -- Operational Test Case Results

Test Case Number

Results

9

A single constructed hypothesis using XOR or OR was
selected if available; XOR was favored if hypotheses
containing both operators were available; otherwise, the

examples were classified using two selected hypotheses

10

A single constructed hypothesis using XOR or OR was
selected if available; XOR was favored if hypotheses
containing both operators were available; otherwise, the

examples were classified using two selected hypotheses

11

For test groups created using chunking or sliding window as
the selection rule, the examples were classified using a single
selected feature common to the two viral file segments; for
test groups created using every other byte sliding window as
the selection rule, hypotheses constructed using XOR were
favored, if available (otherwise, the examples could be
classified using a single OR hypothesis or two selected

features)

A cursory examination of the table above may give the appearance that XOR was

the most effective operator across the large majority of the 45 individual test scenarios

run using the operational test cases. However, there are several issues regarding both the

data and the test results that serve to invalidate this conclusion. First, consider that in

those test cases where hypotheses containing XOR were found useful, hypotheses

containing the OR operator were also selected, when available. Further, note that for

those same test cases, a single hypothesis was sufficient to classify all of the example file
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segments regardless of whether it was built using OR or XOR. This indicates that the
hypotheses containing the OR operator are equivalent in classification power to those
containing the XOR operator for these example groups. Why, then, did DRIVER select
the hypotheses containing XOR in the scenario in which all possible (single-operator)
hypotheses were available? The answer lies in the algorithm used to select from among
the available hypotheses. In any batch of hypotheses containing more than one object
with equivalent entropy values, DRIVER will retain the first hypothesis found; assuming,
of course, that no other available hypotheses exhibit more desirable classification traits.
This behavior was confirmed in the laboratory by altering the order in which DRIVER
constructs new hypotheses, so that those containing OR were built before those
containing XOR. The result was as predicted: a hypothesis containing OR was chosen in
place of the previous XOR hypothesis. In the prior research, thé use of RSM led to the
supposition that XOR and OR were the best candidates for a constructive induction
process which attempts to curb computational resource requirements by first generating
hypotheses containing the most useful possible operators (of those evaluated up to this
point, to be precise). Since those same operators were shown to appear in hypotheses
selected by DRIVER, such a proposition, though certainly not demonstrated
convincingly, is not fully inconsistent with the results obtained here.

However, an examination of the operational test cases themselves suggests that
the properties exhibited by such data shed doubt on the usefulness of a constructive
induction-based learning engine prototype such as DRIVER. Consider the following data
concerning unique features extracted from the test file segments that make up the

operational test cases:
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Table 9 -- Unique Features in Operational Test Cases

Test Case Number Extraction Method Number of Unique Features
Discovered (Among 10 File
Segments)
9 Chunking 60
9 Sliding Window 850
9 E/O Byte Sliding Window 690 .
10 Chunking 60
10 Sliding Window 850
10 E/O Byte Sliding Window 690
11 Chunking 59
11 Sliding Window 821
11 E/O Byte Sliding Window 690

Since the number of features extracted from each 100-byte example file segment using
chunking is 6, and the number of file segments per test case is 10, the maximum number
of features that can be discovered using chunking--in this case--is 60. This "maximum
feature scenario” occurred as a result of the chunking extraction process as applied to
both test groups 9 and 10. Furthermore, these same test groups were found to have the
maximum possible number of unique features when examined using both of the other
extraction methods. In other words, every feature of every file segment in both of the
first two operational test cases is different from every other feature of every other file
(including the same file) in their respective test groups. This test configuration is
inappropriate for validating the usefulness of a constructive induction-based learning
mechanism such as DRIVER, since nonself examples can be easily classified using any
of the hypotheses seleéted from among the features found in the nonself examples. The
problem can be handled readily by a less powerful learniﬁ g process such as selective

induction. In the case of test groups 9 and 10, the éxample file segments can be classified
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using two hypotheses--one of the features selected from each of the two file segments
that were labeled as nonself. In general, any group of examples in which all features are
unique can be classified using selective induction according to the following hypothesis
formula:

(fI ORf2ORf3 ... OR fn)
- where n is the number of nonself examples and f1...fn represent features selected from
each of the nonself examples. Although the formula above has the appearance of a
constructed hypothesis, it is logically equivalent to arranging the set of n selected
hypotheses in a decision tree, which is a product of the selective induction process. The

following figure depicts this equivalence.

Constructive Induction Selective Induction Only
(constructed hypothesis) {decision tree)

f1ORf20Rf3...0R fn

Jfx - feature selected from example
S, - self example x
NS, - nonself example x

Figure 1 -- Equivalent Representations of a Concept
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At first glance, operatibnal test case 11 appears to represent a more functional
measure of the learning engine's capabilities, since the unique feature count indicates that
there is some feature overlap (recurring features) between the file segments when
chunking and sliding window are used. Unfortunately, the amount of overlap is minimal,
leaving a significant number of distinct features among the group of file segments. For
this reason, test case 11 also does not represent the desired scenario in which the chosen
examples cannot be classified using selective induction alone (as shown in the results
table).

In addition to the problems with the operational test cases detailed above,
attention should be directed toward limitations in scope. Since each of the example file
segments in the three test groups was limited to 100 bytes, these segments represent only
a very small fraction of the features present in the actual executable files from which they
were taken. For example, the Microsoft Word 97 Service Release 2 executable is
5,337,088 bytes in size; therefore, the file segment taken from Word represents only
0.00187% of the "parent” file. One of the goals for future testing of DRIVER, or similar
software, would be to increase the size of the individual example files to more realistic
proportions. However, a strong possibility exists that the use of larger examples would
not increase the amount of feature overlap and result in a more desirable testing scenario.
The reason for this is the number of unique features made possible by the chunk size used
by each of the feature extraction methods. Since a 16-byte chunk contains 128 bits, there
are 2! possible chunks, a subset of which will be found in a given example. In other
words, unique features will likely be found in even the largest of test examples. The

decision tree for a large operational test scenario would therefore contain either a large
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number of selected features or a smaller number of constructed features (found only at
great computational expense). One possible solution to this problem would be to
decrease the chunk size used by the feature extraction methods.

Given the information obtained so far regarding the operational test cases, a
question arises as to why the RSM analysis performed by Cardinale and O'Donnell
indicated a preference for the OR and XOR operators, or even constructive induction in
general, since selective induction is suitable in every test case examined. One possible
answer is that the learning engine developed in conjunction with the previous research
was unable to construct decisioﬁ trees. In many cases, DRIVER was able to specify a
small decision tree (2 nodes and 3 leaves) capable of classifying all of the examples in a
particular test group. However, without the ability to build decision trees, a learning
engine using algorithms similar to those at work within DRIVER would be unable to
discern the value of any one selected hypothesis as used in tandem with another
hypothesis. Such a program would be unable to evaluate hypotheses except as standalone
classification tools. Hence, constructed hypotheses would be shown preference when
examined with respect to their ability to classify the operational test cases used here,
since a standalone constructed hypothesis was often sufficient to classify all available
examples. However, keep in mind that for the operational test cases, DRIVER found
small decision trees that were equivalent to the available constructed hypotheses--no
functional difference was found between those hypotheses containing OR and XOR, and
the OR operator can be represented using a decision tree. If the RSM analysis had

considered decision trees as a guidance mechanism, in addition to individual hypotheses,
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the indicated preference for constructed hypotheses using XOR and OR may have been

reduced, or possibly eliminated altogether.

5.2.3. Future Test Cases

Given the limited utility of the test groups discussed thus far, a need exists to
define scenarios better suited for inclusion in subsequent research of this type. This
section introduces several hypothetical test cases capable of testing a constructive
induction-based learning engine such as DRIVER in a more rigorous fashion.

Excluded Features in Self Examples. Consider a group of test files in which four

features exist as follows:

Table 10 -- Proposed Test Case A

Example - Type Attrib A | AttribB | Attrib C | AttribD
No.
1 self f1 f4 4 4
2 self f4 f4 2 f4
3 self f4 3 f4 f3
4 self 2 f4 4 2
5 self f1 fl f1 f4
6 nonself 3 2 f4 f4
7 nonself f4 fi 3 f4
8 nonself f1 f4 2 f4

Notice that no feature is unique to either the self or the nonself examples. This property
prevents selective induction from simply culling distinct features from either the self or
nonself examples, which is what happened during many of the experiments using the

laboratory and operational test cases. Among the examples shown above, no self
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example contains features f1, f2, and f3 in any combination with one another. In other

words, these features are exclusive among the self examples, which also means the entire
set can be classified by the hypothesis (f/ XOR (f2 XOR f3)). Selective induction can be
used to build a decision tree equivalent to this hypothesis, but the tree has five nodes and
six leaves. Alternatively, given the availability of constructed hypotheses containing one

operator, a smaller tree can be built as follows:

Node 0
hypothesis: (f OR f3)

/ Fakse
Node}
hypothesis: {f2)
V \K

Node 4
hypothesis: (f7 XOR f3)

2

Figure 2 -- Decision Tree for Test Case A Using Single-Operator Hypotheses
This test case is similar to the weather example (see Section 5.2.1.) in that a more
compact representation can be achieved as more sophisticated hypothesesiare made
available. Although this scenario used only a small number of examples with a small
number of attributes, larger test cases with similar properties could be easily constructed.
In principle, this example demonstrates the desired testing situation in which only a few

(possibly zero) features are unique to only the self or nonself examples.

72



Scenarios Testing Additional Operators. If future constructive induction
implementations use a different set (or broader range) of operators, then testing strategies
appropriate to that program should be devised. The researcher may also desire to create
examples testing whether existing operators are capable of "masquerading” as other
operators with respect to classification power. For example, the intent originally behind
laboratory test case 4 was to test the learning engine's ability to detect byte parity.
Although the group of example file segments designated for this test case was, to some
extent, inappropriately structured, and no parity-related operator was used in hypothesis
construction, the idea of testing for parity recognition is a potentially useful one. In its
current implementation, DRIVER can only identify unique features or combinations of
features on the byte level, so a complete training set for byte parity would likely contain
28 (256) examples and require a decision tree with the same number of leaves. If this
turned out to be the case (and parity was already known to be a useful classification
attribute), then the addition of an operator for even or odd byte parity might be
appropriate, since this characteristic can be determined more efficiently than by making
eight comparisons (the height of the decision tree in this case) per byte feature.
Additionally, consider the previous test scenario. Those examples, which were classified
using the operators currently available to DRIVER, could also be classified using an
operator which counts the number of unique features in an example, since there were two
unique features in every self example and three unique features in every nonself example.

Additional operators may be particularly useful in test scenarios where selective

induction is of no use whatsoever. Consider this group of examples:
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Table 11 -- Proposed Test Case B

Example Type Attrib A | AttribB | Attrib C | AttribD
No.
1 self 2 3 f4 fl
2 self 3 f4 2 2
3 self fi 2 3 - f4
4 self 1 3 f4 f1
5 nonself f4 2 3 f1
6 nonself 2 f4 fl 3
7 nonself f4 f1 2 3

So many features are shared among the examples in this test case that they cannot
be classified using selective induction. However, close inspection of the self and nonself
examples reveals that properties do exist which can be exploited by using new operators.

Notice that in the self examples, feature f3 always appears before feature f4. This

~ property does not hold in any of the nonself examples. Therefore, a before operator

could be applied in order to successfully classify the examples in this group. Notice also
that only in the self examples do features f3 and f4 appear next to one another--they are
always separated by at least one other feature in the nonself examples. A distance
operator could be used to exploit this property. However, one should note that although
the appropriate choice of opcrators can be easily illustrated using an example of this type,
such relatively obvious solutions can be Very difficult to determine given the large,
diverse files likely to be encountered in full-scale test situations. Intimate knowledge of
the problem domain is often required in order to make the most effective decisions

regarding operator selection and application.
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5.3. Performance

Although the meas.urement of performance was not a primary goal of this
research, some remarks as to the performance characteristics displayed by DRIVER are
appropriate, since they have sorﬁe impact on the perceived practicality of the virus
detection téchniques under investigation. As currently implemented, DRIVER requires
extensive system memory resources. The process primarily responsible for these
memory requirements is hypothesis construction and storage. Not surprisingly, the test
cases in which hypotheses containing all of the available operators are constructed
require the most memory. The most intensive of these tests--those in which the
maximum possible number of features are extracted from the set of file segments--result
in‘approximately 10 hypotheses and require more than 100 MB of storage; a surprising
consequence, since DRIVER represents both operators and features internally as 32-bit
integers. This exceeds the amount of available physical memory on many current
personal computer systems, which is undesirable since applications that require disk
swapping typically incur a severe performance penalty. There are two techniques which
may allow future versions of DRIVER, or similar software, to function using a smaller
améunt of an individual computer's resources. The first is to modify the data structure
used to contain the list of hypotheses. The current data structure is the "Vector” object
supplied with the Java programming language. The second, more extensible technique
would be to modify the learning engine so that the hypothesis generation and evaluation
phases were acconiplished in smaller chunks. At present, the hypothesis evaluation step

is not accomplished until all the hypothesis construction is finished. In order to conserve
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memory, hypothesis construction could be performed in smaller chunks, resulting in an
iterative process in which construction and evaluation alternate until the entire batch of

hypotheses has been examined (and the best performers retained).

54. Summary

In this chapter, the results of the test scenarios using the DRIVER learning engine
prototype were presented and evaluated. The original goals of the testing process were to
confirm that DRIVER functions properly as a constructive induction engine and to test
the research hypothesis that coﬁstructive induction is a useful mechanism as applied to
virus detection. A set of test cases common to both past and current research efforts was
utilized in order to achieve this goal. Although there was some correlation between the
previously obtained results and those produced by DRIVER with regard to the selection
of hypotheses containing the XOR and OR operators, an evaluation of the data sets
indicated deficiencies which limit the conclusions that can be drawn from these results.
An important observation with regard to the test data is that for nontrivial test groups, the
percentage of unique features among examples is quite high. Reducing the chunk size of
the extracted features should result in more feature commonality among examples. The
computational éomp]exity inherent in the constructive induction process continues to
limit the practicality of the process as implemented here. In Chapter Six, some
suggestions for optimizing the process so as to minimize the impact of this issue will be

presented, along with other conclusions regarding the data presented in this chapter.
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6. Conclusions

6.1. Overview

This research combined aspects of both computer virus detection and inductive
machine learning in order to increase the availability of knowledge regarding the extent
to which these two concepts can be integrated in a mutually beneficial manner. The
overarching goal of this line of research was to demonstrate the advantages and
disadvantages of utilizing constructive induction as a means of augmenting currently
p.opular virus detection and eradication techniques. Given the considerable obstacle
posed by the computation and storage resource requirements associated with the
utilization of constructive induction over example sets of even moderate size, current
research should be focused on methods by which the process can be optimized. More
efficient applications of the process should serve to amplify what is believed to be the
primary benefit, which is the ability to generalize over example domains larger than the
set of training examples. While the experimental results obtained as a result of this
research failed to provide substantive evidence of this benefit, they did consistently
confirm the fundamental drawback. A prototype learning engine, presented as one of
three components of a proposed localized computer virus detection system, was modeled
presented, and implemented in order to investigate some of the real-world ramifications

of the overall research goal. The testing performed using this prototype was
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accomplished in order to obtain evidence either supporting or not supporting the research

hypothesis.

6.2. Research Hypothesis

Hypothesis

Constructive induction is an appropriate foundation for the virus detection

subsystem of a single-computer antivirus solution

In accordance with this hypothesis, the primary research thrust was to attempt to
gather evidence supporting the use of a constructive induction-based learning engine as
an integrated component in a virus detection system. No attempt was made to prove or
refute the research hypothesis in a formal manner; however, data was obtained which
provided some insight into past efforts designed to explore questions regarding the
hypothesis. This data was the result of analyzing not only DRIVER's behavior in
classifying the examples contained within the eleven test cases, but also the contents of
the test cases themselves. Deficiencies in the utility of both the laboratory and
operational test cases were found to exist--the unexpectedly limited scope of the
laboratory test cases constrained the testing spectrum, and the feature content of the
operational test cases was too diverse to be of much use in evaluating the usefulness of
DRIVER's ability to produce and evaluate constructed hypotheses. Despite this, the
operational test cases were retained for two reasons. First, the chunk size used by the

feature extraction methods was likely to result in equally diverse feature content for even
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much larger example sets. Second, these test cases were useful in providing a direct
comparison regarding Cardinale and O'Donnell's conjecture as to the usefulness of
response surface methodology. To this end, some correlation was found between the
constructed hypotheses chosen by DRIVER for use in classifying the example sets and
the operators that the RSM process designated as most useful. However, test runs using
DRIVER sl;owed that although hypotheses containing the XOR and OR operators were
the most powerful stand-alone classifiers, constructive induction was an unnecessary
computational expense in classifying the operational file segments, given the availability
of decision trees. Therefore, the research hypothesis could neither be proven nor refuted.
In addition, research of this type continues to gather empirical evidence regarding
the validity of the research hypothesis. Although DRIVER--a partially-implemented,
constructive induction-based learning engine--was able to show instances in which
constructed hypotﬁeses displayed classification power beyond that exhibited by selected
hypotheses, tradeoffs in the time and space required to arrive at these results had a
mitigating effect on the perceived overall usefulness of constructive induction. In
practice (and with continuing research), the repeated application of process optimization
techniques, combined with variations in other aspects of constructive induction such as
operators and feature extraction methods, may yet prove effective in demonstrating
constructive induction-based models in which the benefits clearly outweigh the

drawbacks.
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6.3. Implications

The results of the testing performed using DRIVER indicate that constructive
induction, as implemented, appears to be of limited value in the scanning-based virus
detection domain. Examples from actual software applications were shown to have very
little feature overlap between them, thereby rendering the construction of new hypotheses
with logical operators unnecessary. The technique is made even less practical by its
computational complexity, the primary drawback to systems based on constructive
induction. Domain knowledge can sometimes be utilized to reduce this complexity. Of
the many possible pieces of domain knowledge, only one--operator bias--was examined
as a possible process optimizer here. The operational test group experiments showed that
while not required, hypotheses containing the XOR and OR operators--when available--
were chosen by DRIVER as the most capable classifiers in seven of the nine total feature
extraction scenarios. While this trend is consistent with indications obtained through
previous experiments using RSM, no definitive conclusions have been reached with
regard to this optimization technique at this time. In prior research, RSM has been
characterized as merely a peripheral to the CI process. However, based on the small
amount of evidence gathered using the tests documented herein, RSM continues to show
some promise as an integrated function in the constructive induction cycle as applied to

the domain of computer virus detection.
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6.4. Limitations

Computer virus detection and removal is an enormous problem encompassing a
diverse array of technical disciplines. Almost any individual research effort devoted to
advancing this field is necessarily limited in scope. This research was limited to the
investigation of process optimization techniques which may be of assistance to a machine
learning process, which itself may be applicable to the virus detection domain. The
models developed in order to conduct this investigation were informal in nature, and can
only be verified through informal means.

Beyond those obstacles which befall any researcher attempting to tackle one or
more of the queétions still remaining within the domain of machine learning as applied to
virus fighting, each individual res.earch effort must bevbuilt around a smaller, but equally
important set of constraints. One of the foremost limitations faced by this particular
research effort was the limited usefulness of the designated example sets. Although these
example sets were needed in order to test the research hypothesis, they were generally
inadequate to the tasks of demonstrating the value of DRIVER as a learning component
and constructive induction as the basis for a virus detection system. Chapter Five
provides some suggestions as to the composition of more robust example sets.

Another important limitation in the study of any constructive induction-based
process is the computer hardware on which the testing is performed. Additional
operators, features, construction iterations, extraction methods, and test cases all tend to
place a considerable burden on the processing and storage subsystems of tesi machines.

For this reason, the number of tests that can be performed over any given length of time
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tends to be relatively small. Even then, sacrifices may need to be mac}e in the absolute
realism of the test scenarios. For example, even though byte sequences from existing
software applications were used, at no time was DRIVER involved in testing on "life
size" application files. Based on the results of testing using 100-byte example files, the
amount of time required to conduct a test based an application such as Microsoft Excel

would be truly prohibitive.

6.5. Future Research

— Incorporation of Response Surface Methodology. Although the results of this
research lend some support to the use of RSM as an integrated constructive
induction component, no attempt has yet been made to actually implement the
proposed integrated software application. Nothing so far has indicated that
doing so does not represent a worthwhile exercise. The performance benefits
resulting from the marriage of these two techniques should be measured, and
additional testing is required in order to confirm the benefits of RSM over a
larger range of test cases.

— Incorporation of Domain Knowledge. RSM is not the only optimization
technique capable of supplying important pieces of knowledge about a
particular problem domain. Other techniques may be equally valuable in
providing bits of information leading to a reduction in computational

complexity, not the least of which is user experience.
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— - Testing of Detection Components Over "Full-Size" Applications. Using one
or more process optimization techniques, it may be possible to conduct virus
detection testing using whole application files. However, aggressive
complexity reduction measures are required in order to overcome the storage
requirements of construction, which increase exponentially with a linear
increase in the number of selected hypotheses. Further gains can be
accomplished by optimizing the existing DRIVER source code so as to make
the currently-implemented constructive induction process more efficient.

— Exploration of Additional Feature Selection Methods and Operators. The
testing conducted in conjunction with this research utilized only a tiny fraction
of the total number of available feature selection methods and operators.
There are undoubtedly a number of useful operators that have not yet been

explored, and the same holds true for selection methods.

6.6. Summary

Computer viruses remain a tangible threat to systems both within the Department
of Defense and throughout the greater international data communications infrastructure
on which the DoD increasingly depends. This threat is exacerbated continually, as new
viruses are introduced at an alarming rate by the growing collection of connected
machines and their operators. Unfortunately, current antivirus solutions are ill-equipp¢d

to address these issues in the long term. This thesis documents an investigation into the
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use of constructive induction, a form of machine learning, as a supplemental antivirus
technique theoretically capable of detecting previously unknown viruses through
generalized decision-making techniques. A group of examples derived from common
software applications, utilities, and viruses was tested in order to evaluate the benefits of
adding constructive induction to the process of selecting suitable virus signatures. A
prototype virus detection system subcomponent, DRIVER, was developed to conduct the
experiments. Due to the feature-rich content of nontrivial example files and DRIVER's
ability to assemble decision trees, results showed marginal benefits--compounded with
significantly increased computational resource requirements--in the use of constructive
induction. Future research, emphasizing a co’mbination of optimization techniques and
test cases increasingly approximating "real world" detection scenarios, should eventually
establish whether constructive induction represents a genuinely useful and practical

alternative to today's antivirus measures.
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Appendix A -- Source Code

The source code for DRIVER is not included as part of this document. Those interested

in obtaining a copy of the source code should direct their requests to:

Dr. Gregg Gunsch
AFIT/ENG
2950 P Street
WPAFB, OH 45433-7765

gregg.gunsch @afit.af.mil
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